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Abstract 
The presence of an epitaxial interface between the silver 

carboxylate and silver bromide nanocrystals in 
photothermographic imaging materials has been debated for many 
years. This type of an interface has been observed in model 
systems, and the reaction conditions used to prepare the silver 
soap (in the presence of the silver bromide) are conducive to the 
formation of that interface. In order to determine if this interface 
can be detected at any stage of formation of the silver soap during 
its preparation in the presence of silver bromide nanocrystals, we 
have undertaken cryogenic TEM investigations to freeze the 
reaction and reveal the formation of the silver stearate (AgSt) 
microstructure at the very initial stages of the reaction, which 
precedes significant crystal lattice formation. We found 5 nm-sized 
AgSt micelles, which aggregate to produce larger (50–100 nm in 
size), loosely packed crystals, but AgSt nucleates on AgBr when 50 
nm cubic grains are added to the NaSt dispersion prior to the 
AgNO3. After nucleation, the AgSt micelles form structures via an 
epitaxial interface on at least one corner of every available AgBr 
cubic crystal. Complete details of this reaction process and the 
implications to subsequent silver soap crystal growth will be 
discussed in this talk. 

Introduction 
Silver complexes of long chain fatty acids have been utilized 

for a long time in thermographic and photothermographic imaging 
materials [1–3]. The preparation of the silver carboxylate (soap) 
component of these imaging materials has been the subject of many 
patents [see for example, 4–6] but very little has been reported in 
the literature regarding the functional details of this process [7–10] 
Of particular interest here is how the silver soap forms in the 
presence of a nucleating site, such as the nano-particles of silver 
bromide [11]. In this case, the formation of an epitaxial interface 
between the dissimilar crystal lattices of the silver bromide and the 
silver carboxylate has been the subject of literature debate, 
especially as its potential involvement in modifying the 
photophysics of the imaging process [12,13]. The importance of 
this interface is fundamental to the postulate that it is the basis for 
the photocatalytic mechanism of latent image formation in PTG 
materials [15,16]. It explains the silver halide grain size 
independence of photocharge signals observed in systems in which 
this type of interface can form, as well as the observation that 
conventional silver halide chemical sensitization methods do not 
seem to work well in solvent-based PTG formulations. A better 
understanding of this silver soap crystallization process should be 
useful in improving the imaging properties of imaging materials 
made from it. 

The object of this study is to reveal the details of the initial 
stages of reaction of the silver ion with the sodium soap in order to 

understand the processes involved that control the formation of the 
final silver carboxylate crystal, and to determine to what extent an 
epitaxial interface is formed between the silver bromide 
nanocrystals and the silver soap formed in its presence. We now 
report that silver soap crystallization dominates over crystal 
growth and large numbers of size-limited silver carboxylate 
crystals form. In the presence of cubic silver bromide nanocrystal 
grains, clear evidence for the crystallization of silver stearate via 
an epitax on every silver bromide grain was obtained. The details 
of this investigation and conclusions are given below. 

Experimental 
On-the-grid reaction was carried out by mixing sodium 

stearate (NaSt, >99%; Sigma Chemical Co., MO) and silver nitrate 
(AgNO3, Allied Chemical Co., NJ) directly on a TEM grid 
supporting a perforated carbon film (Ted Pella, Inc.: hole sizes 
range 1–10 µm in diameter), as described elsewhere [17,18]. The 
reaction was then quenched by plunging the specimen into liquid 
ethane at its melting point cooled by liquid nitrogen [19]. The 
vitrified specimen was mounted on a Gatan cryo-holder and 
transferred into a JEOL 1210 TEM. All images were recorded with 
a Gatan 724 MultiScan camera at –170 °C. High magnification 
images were obtained with low electron doses (fewer than 10 
electrons/Å2) to minimize electron-beam radiation damage to the 
specimen [19]. 

Results and Discussion 

Characterization of the Initial Stages of the Reaction 
between Silver Nitrate and Sodium Stearate 

 
The addition of silver ion to the sodium soap under normal 

conditions is usually carried out below the sodium soap Krafft 
temperature (temperature-limited solubility boundary). 
Consequently, the sodium soap is not a solution but a dispersion of 
crystals. Thus, it is important to first establish if the solid-state 
structure of the sodium soap ribbon has any effect on the solid-state 
structure of the resulting silver soap. Optical microscopy shows 
that the initial NaSt crystallites (on the order of 10–20 × 1–5 × 0.5–
1 µ) are primarily ribbons below the Krafft temperature. We found 
that within the first 15–20 min the silver stearate could be observed 
at room temperature to undergo normal Ostwald ripening 
processes. However, higher magnification was needed to see the 
details regarding the AgSt formation, particularly at the very initial 
stages of crystallization. Cryo-TEM enables an aqueous sample to 
be prepared and flash-vitrified when placed on a TEM viewing grid 
[19]. Representative cryo-TEM images of 10 s reaction times are 
shown in Figure 1. These AgSt aggregates are generally around 50 
nm in size.  

 



 

 

 
Figure 1. [(C18H35O2)x(Nax-y)(Agy)(H2O)z] micelle aggregation. 

In addition to the aggregates, many small “dots” less than 5 
nm in size are also visible. All of the aggregates, large or small, are 
comprised of many of these much smaller, 5 nm particles loosely 
packed together. We propose that these dots are the very initial 
silver soap micelles having a mixed composition, [(C18H35O2)x(Nax-

y)(Agy)(H2O)z], which is indistinguishable from [(H2O)zAgSt]n at 
this stage. 

Effect of AgBr Nanocrystals on the Initial Stages of the 
Reaction between Silver Nitrate and Sodium Stearate 

When AgNO3 is added to the NaSt dispersion containing 50 
nm AgBr nanocrystals, significant differences are observed. As in 
the case without AgBr, spherical [(H2O)zAgSt]n micelles are 
initially formed. Quite unlike the AgBr-free reaction mixture, 
however, no subsequent aggregation of those silver stearate 
micelles was observed over equivalent reaction times. Instead, the 
AgSt micelles can be observed to adhere to the AgBr crystal 
surfaces. Initially, the nucleation site on the AgBr grain seems to be 
non-preferential, multiple deposits are observed over many 
crystallographic planes on the AgBr (Figure 2), and begin to 
coalesce into epitaxial buds.  

 
Figure 2. Silver stearate deposition on AgBr (50 nm) grains 

The silver stearate micelle concentration diminishes, and fewer 
micelles are observed on the silver bromide surface. The 
composition of the pre-epitax was found by FT-IR to be AgSt 
crystals (likely retaining some water of hydration at this stage) 
resulting from subsequent additional deposition of AgSt micelles 
and Ostwald ripening of the incipient AgSt crystal.  

As the reaction time prior to plunge-freezing is increased to 5 
min, the AgSt buds become longer, and the first indication of the 
periodic AgSt lamellar structure begins to appear (Figure 3).  

 
Figure 3. AgSt epitax growth. 



 

 

As the reaction time proceeds, 10 min and longer, the larger 
portions of the silver stearate structures then begin to show the 
well-known plate-like structures. 

Conclusions 
The initial stage of the reaction between NaSt and AgNO3 

produces both AgSt micelles, [(C18H35O2)x(Nax-y)(Agy)(H2O)z], and 
AgSt micelle aggregations that form cubic-shaped pre-AgSt 
crystals. This is a diffusion-controlled process, and the silver ions 
react primarily with solvated NaSt molecules and micelles rather 
than the solid NaSt dispersion. The morphology of the starting 
sodium soap crystallites has no influence on the morphology of the 
subsequently formed silver soap crystallites.  

When cubic grains of 50 nm AgBr are added to the NaSt 
dispersion prior to the AgNO3, the exchange reaction proceeds to 
form the silver stearate micelles, but the presence of the new 
surface provides a nucleation site that initially short-circuits the 
aggregation of silver stearate micelles. The (111) silver ion planes 
of the AgBr cubic crystal corners provide the preferred nucleation 
sites for silver stearate micelle deposition and crystal growth. After 
nucleation, the AgSt micelles form bud-like structures on typically 
one but up to several corners of each AgBr cubic crystal. The buds 
grow longer and link other available free ends over this reaction 
time.  
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